

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

“Risk” Automate Demo Script

We’ll be playing the role of a sys admin in the bank’s IT department, acting on a 0-day vulnerability

I’m sure you’ve seen something similar in your own work: think of Heartbleed, Shellshock, or this week’s flavor of NSA leaks.

Let me ask: If you had to identify and remediate your entire infrastructure from something like Heartbleed, how long do think it would take you today?

For our bank in real life, a single admin was able to remediate their 2200 Chef-managed nodes in under 15 minutes. The other 50,000 or so nodes took them 150 people and 9 full work days to remediate. We’re going to follow in the footsteps of that lone admin and tackle this vulnerability using Chef Automate, which is going to drastically reduce the amount of time it takes to detect and remediate.

Let’s say we’ve just received this email giving us details of the 0-day vulnerability and how to remediate it

How often are you asked to do this?

With Chef Automate, our auditors will start by determining which servers are vulnerable to this attack, then we’ll write and test a remediation, and finally we’ll quickly and safely introduce the change into Production.

Move to Demo environment: Open email from internal auditor showing vulnerability

So where does Chef come in

First, we’ll use Chef Automate to gain insights into which servers are affected by this vulnerability. We’re using the same view our security auditors used to see that our entire production fleet are susceptible and need remediation.

How long would this typically take you?

Open to Chrome, on the Node tab. Navigate to Compliance Status to show Red Donuts

The Compliance Status tab makes it go much quicker

showing us clearly when there IS a problem in our environment; clicking on one of our servers shows us WHAT the problem is, which is that SSL 3 should not be enabled; and finally, clicking on the problem shows us exactly WHERE this problem is, on Port 443, SSL 3 is enabled, and how we can remediate it - disable SSL 3 on all ports, in this case, 443.

Our security team has pulled together this profile to act as an SSL compliance baseline for all of the nodes we manage.

	On Compliance status tab - There is a problem.

	Click on Delivered - See what the problem is

	Click on Problem - See WHERE the problem is

And now that we’ve identified the issue and the affected nodes, it’s time for us to remediate the problem

We’re simply going to open the cookbook recipe that contains this configuration and update our SSL config to be more secure.

	Create a branch git checkout -b remediate

	open the cookbook code .

	navigate to templates->default->ssl-benchmark.conf.erb

	uncomment lines 12 and 13

	save file

	Open metadata.rb and update version number

	commit git commit -am ‘promote fix for vuln’

	Promote to delivery delivery review -a

	promote change through pipeline

This updated cookbook is now being safely and quickly promoted into production using the continuous integration and deployment framework in Chef Automate

We’ve promoted this change, it’s being be tested against any dependencies it has, and once it’s passed through our pipeline, Chef Automate will automatically apply these configuration settings to our servers. And finally, it’ll kick off another scan of our Production systems to verify that the change we made remediated our Auditors concerns.

Are you subject to any external or internal audits?
How often; (quarterly, annually)?
How would you check your machines for a vulnerability today?
Would you write a script?)

Click on Review Tab in Workflow, show changes, Audit Logs, etc.

Historically, there have been pitfalls with scripting these audits, such as handling different operating systems, how and where to maintain all these scripts, and running error-prone manual executions

We need to use a method that gives us the control to define the desired state of our systems and the flexibility to apply those definitions to our running infrastructure–and that’s Chef Automate!

With Chef Automate, we get a library of compliance profiles from the Center for Internet Security that ship out of the box, and we can easily import NIST and DISA STIG SCAP profiles, as well as Microsoft Security Center profiles!

Chef Automate uses a language called InSpec to very simply express our requirements as code in a format that’s also understandable for non-engineers; it then uses that language to scan and report back on the status of our infrastructure.

That means we have the ability to create our own profiles, use ones that come pre-loaded, or establish a standard built on a combination of both.

Do you see any profiles here that you use or would want to use today?

Navigate from Viz to Compliance TAB, open the “Available” profiles tab

Once Workflow sends our change through the pipeline, we can verify that the vulnerability has been corrected by viewing the results of our rescan

When that profile runs against those same servers, we see no vulnerabilities. Our auditors love Chef Automate because it provides them real-time insights into the compliance of our organization, and I love Chef Automate because it only took us a matter of minutes to patch an SSL vulnerability on our systems!

Open the visibility tab, show that the machines have recently checked in and implemented the change, switch over to the compliance tab and highlight the machines are no longer vulnerable.

Show on the scan report that the node is now compliant and passed the rule.

So, how much time do you think this will save you from your current 0-day remediation process

Return to Demo Solution Details slide

Change Log

5.2.0

Features

	Updates build_demo script to properly tag azure resources.

4.6.2

Bugfixes

	Remove all references to Compliance from ARM templates

4.6.1

Features

	Renable Azure builds

4.6.0

Breaking Change

	Shell and powershell launchers now require an additional argument for the cloud platform. This will break any scripts based on the prior argument sets.

Features

	Add support for multiple cloud platforms to shell and powershell launchers

	Ability to launch Azure-based demo environments from shell and powershell launchers

Requirements

	Launching Azure demos requires Azure CLI 2.0+ to be installed on local workstation

4.5.6

Feature:

	Drop a file on the desktop with DCA commands for the demonstrator to quickly reference.

4.5.5

Features

	Clarify the usage statement for build_demo.sh, the cloud provider is part of the version

4.5.4

Feature:

	Add PowerShell launch script ./bin/build_demo.ps1. Launch demos on Windows the same way as the Mac!

4.5.3

Bugfixes

	Add required X-Application tag to build script

4.5.2

Features

	Updated bjc_workstation cookbook to define the workstation’s startup script as an attribute, allowing easier custom builds.

Bugfixes

	Updated the audit-wrapper cookbook to use the ‘workstation-1’ user instead of ‘delivery’.

	Updated bjc_infranodes cookbook with guards to only execute linux-specific resource if node['platform'] isn’t ‘windows’

4.5.1

Bugfixes

	Update build cookbook to expect 10 AMIs instead of 11, now that Compliance is not being built.

4.5.0

	Removed the Compliance Server from the demo stack.

4.4.6

Bugfixes

	Update verification logic to only validate version bump in wombat.yml in Verify. Change will have already been merged to master when Unit is re-run at Build.

4.4.5

	Update build cookbook to validate that CHANGELOG.md and demo version have been changed during Verify per #676 [https://github.com/chef-cft/bjc/issues/676]

4.4.4

	Allows RDP to be reached over port 443 on workstation per #422 [https://github.com/chef-cft/bjc/issues/422]

4.4.3

	Functional tests executed on build nodes in promotion pipeline

	Allow inbound WinRM in CloudFormation template

4.4.2

	Updated tagging standards for Stacks & AMIs

4.4.1

	MVP release of Azure Cloud Migration startup script

4.3.12

	Updated partner accounts

	Removed windows 2012-r2 workstation support

	Removed “visibility” bookmark from Chrome

4.3.11

	Updated partner accounts for auto-publish.

4.3.10

	Updates to community cookbooks metadata to pull in habitat

	Updates to Powershell functions to enable adding roles to nodes

4.3.9

	Adds audit-wrapper cookbook to the Chef Server

	MVP release of AMI tagging

	Updated templates to only export AMIs on pipeline builds

	Updates Automate to 1.8.3

4.3.7

	Adds the audit-wrapper cookbook to the repo

	Uploads additional roles and cookboks to the Chef Server

	Conditional build behavior removed from build cookbook. All changes will now result in a full stack build.

	ChefDK 2.x update on workstation

	Wombat gem version pinning update to support ChefDK 2

4.3.2

Updates:

	Start_CM.ps1 updated to auto-launch initial EC2 instance. Speeds up and simplifies demo startup.

4.3.1

Updates:

	Powershell functions will now output the un-abstracted command they ran when complete.

Bugfixes:

	Fixes an issue in the build cookbook where acceptance de-provisioning fails if executed on a centos builder. Confining configs to ubuntu builders for that stage.

4.3.0

Updates:

	Cloud Migration MVP! New minor version bump.

	Added Start_CM.ps1 startup script to launch cloud demo.

	Added new powershell functions for CM demo

Powershell Aliases:

	DCA-Bootstrap-SSH $Hostname $Environment $Cookbook $Recipe

	Bootstraps a node via SSH to the specified environment and add $Cookbook::$Recipe to its run list.

	DCA-AWS-Create $Environment $Cookbook $Recipe

	(AWS Only) Creates a new EC2 instance, and bootstraps into specified environment with associated recipe in its run list.

	DCA-Nuke-Automate

	Deletes all data from Automate Server. Keeps installed profiles, creds, and nodes. Just removes converge/scan history.

Breaking Changes:

	The Update-RunLists and DCA-Update-Nodes functions now require a cookbook to be specified. Previously only required recipe, as the dca_demo cookbook was hardcoded. Script will be updated with promotion.

4.2.3

Updates:

	Added new cookbook/profile for Cloud Migration demo to chef server and workstation.

4.2.2

Updates:

	Added assurity partner account to accounts.json per #642 [https://github.com/chef-cft/bjc/pull/642]

	Added dca_audit_baseline and dca_hardening_linux to BJC workstation local checkouts.

4.2.0

Updates:

	Added MVP Windows wrapper profile to repo, and updated workstation recipe to upload.

	Moved initial CCR to user_data in the cfn json. The start_demo script now waits for machines to register, and runs a second CCR via push jobs.

	Minor release due to change in default instance types and launch behavior. Should be non-impacting to demo workflows.

Closed Issues:

	#632 [https://github.com/chef-cft/bjc/issues/632] - enhancement - Updated json template to use m4/c4 instances instead of m3/c3. Should slightly improve performance, and reduce instance costs.

	[#634]((https://github.com/chef-cft/bjc/issues/634) - enhancement - Updated DCA launch scripts to speed up demo prep. No longer spins up TK by default (can be turned on by uncommenting in Start_DCA), and makes use of powershell parallelization to speed up re-bootstrap of nodes.

4.1.0

Closed Issues:

	#627 [https://github.com/chef-cft/bjc/issues/627] - enhancement - Added CHANGELOG.md to project to better track development history.

	#625 [https://github.com/chef-cft/bjc/issues/625] - bug - Unexpected audit errors persist after DCA_Correct script. Solved by introducing version pinnings to wrapper profile.

	#618 [https://github.com/chef-cft/bjc/issues/618] - enhancement - Added inspec wrapper profile to /profiles directory in project, and archive/upload in Start_DCA script. Replaces previous implementation of pulling a static profile via cookbook files.

	#628 [https://github.com/chef-cft/bjc/issues/627] - enhancement - Added powershell function to combine the functionality of Update-RunLists and Invoke-ChefClient to streamline demonstrations.

How do I contribute to the demo?

This demo is built by wrapping the wombat project cookbooks and packer templates.
You should take a little time and become familiar with wombat and how it works: https://github.com/chef-cft/wombat

The different parts of the project are described below:

	Wombat: Wombat is a system for building standard Chef components from source code. It is meant to be modular and used as the base for other projects, such as BJC. The wombat project can be viewed here: https://github.com/chef-cft/wombat

	Packer: Packer is open source software for building standard Virtual Machine images on various platforms. It is used in BJC (and wombat) to build Amazon AMIs for use in demos.

	Test Kitchen: Test kitchen configs are included with each cookbook in BJC. These cookbooks all wrap functionality contained in the upstream Wombat project. We build our Test Kitchen instances from a bare-bones OS. The wombat cookbooks handle installation and basic setup, then the bjc_cookbook wrappers add extra functionality and settings appropriate for demos.

	Fixture Cookbooks: A fixture cookbook contains recipes that can be added to a run list during testing, but not used in production environments. This allows Test Kitchen to mock attributes and settings that may be required. Each bjc-cookbook has a subdirectory called test. Look in the fixtures subdirectory to see the test recipes. You may see these recipes in the run_list in the .kitchen.yml.

Prerequisites

	You can successfully spin up a BJC-based demo as outlined above

	Slack #chef-demo-project and ask to be added as a collaborator

	Setup an SSH key on your github account

	Create a new key like this if you don’t have one already: ssh-keygen -t rsa -b 4096 -C "your_email@example.com"

	Substitute your github e-mail address & make a note of the location and name of the key

	Go here: https://github.com/settings/keys

	Select ‘New SSH Key’ at the top right

	Give it a name

	Copy the contents of the public key into the ‘Key’ box (e.g. contents of id_rsa.pub)

	Click ‘Add SSH Key’

	Clone this repo: git clone git@github.com:chef-cft/wombat.git

	Install the wombat-cli gem: chef gem install wombat-cli

	Uninstall the wombat gem (this is a different wombat project than ours!): chef gem uninstall wombat

	Install the necessary SSL certs and keys required to build new AMIs. See below:

Download the keys.tar.gz file that is pinned to the #chef-demo-project slack channel. This tarball contains the SSL certs and keys that are required to build new AMIs with Packer and Test Kitchen. You’ll need to unpack this into six directories: the test/fixtures/cookbooks/test/files/default directory inside each of the bjc_automate, bjc_compliance, bjc_workstation, bjc_chef_server, bjc_infranodes, bjc_build_node cookbooks, and the packer/keys directory as well. This only needs to be done once, and these files will be excluded from your git commits by the .gitignore file in the repository root directory. So for example, if you downloaded keys.tar.gz into your Downloads directory you could run the following scripticle:

tar -zxvf ~/Downloads/keys.tar.gz -C cookbooks/bjc_compliance/test/fixtures/cookbooks/test/files/default/
tar -zxvf ~/Downloads/keys.tar.gz -C cookbooks/bjc_automate/test/fixtures/cookbooks/test/files/default/
tar -zxvf ~/Downloads/keys.tar.gz -C cookbooks/bjc_chef_server/test/fixtures/cookbooks/test/files/default/
tar -zxvf ~/Downloads/keys.tar.gz -C cookbooks/bjc_workstation/test/fixtures/cookbooks/test/files/default/
tar -zxvf ~/Downloads/keys.tar.gz -C cookbooks/bjc_infranodes/test/fixtures/cookbooks/test/files/default/
tar -zxvf ~/Downloads/keys.tar.gz -C cookbooks/bjc_build_node/test/fixtures/cookbooks/test/files/default/
tar -zxvf ~/Downloads/keys.tar.gz -C packer/keys

Contributing

	Contributors need to clone the project directly from our delivery server. We do not commit code directly to github, rather we send it through our Workflow pipeline instead. The easiest way to do this is just rename or delete your existing bjc repo and clone it fresh from the new Opsworks Automate server. See #chef-demo-project for help getting an account. https://sa-ww-owca-xt2op7nztjiiy95s.us-west-2.opsworks-cm.io

	Visit the waffle.io board for this repository to see all open issues https://waffle.io/chef-cft/bjc

	Either pick an existing Kanban card or create a new one.

	Read it and make sure you understand what you are supposed to do.

	Ask the creator of the card if anything is not clear.

	Once you understand what is required assign the card to yourself and move it to the ‘Ready’ column.

	Once you begin work on the card you can move it to the ‘In Progress’ column.

	Create a branch in which to do your work:

	git checkout -b scarolan/myFeatureBranch

	Bump the version in wombat.yml.

	cd into the first cookbook you want to work on, and bump the version in its metadata.rb

	Spin up a TK instance with the kitchen converge command.

	The provided .kitchen.yml files inside of each cookbook should work as long as you set the environment variables for your SSH key as noted in “How to spin up a demo” above.

	Keep in mind that some parts of the demo will not work since you only have one isolated instance in Test Kitchen.

	NOTE: If you want to test your instance in a web browser, you must put the ip address and hostname of the kitchen instance in your local /etc/hosts file.

	Example: 209.25.15.23 compliance.automate-demo.com.

	OPTIONAL: If you are working with the Windows workstation and wish to RDP into the TK instance, just fetch the windows Administrator password from the state file located in the .kitchen/default-windows-2012r2.yml file.

	Edit the cookbooks, recipes, or attributes that built the machine.

	Continue to test your work in test kitchen.

	Write some InSpec tests to verify your assumptions. Run kitchen verify to make sure they work.

	Once you are reasonably certain that the target machine is getting built to the correct specification, do a kitchen test to build it once more from scratch.

	Make sure everything is working before you proceed!

	It can take up to 45 minutes to build the Windows workstation AMI.

	Better to fail fast in Test Kitchen before you create a new image.

At this point you should have a branch, with updated cookbook(s) and attributes, and an updated version in your wombat.yml file. The next thing you’ll want to do is build a new AMI and test it with the rest of the stack.

AMIs are built using the ‘wombat’ CLI command (provided by the wombat-cli gem installed as a prerequisite). They can be built individually or all together.

	Build a single AMI (or group of AMIs in the case of the infrastructure [AURD] nodes):

	wombat build bjc-workstation will build a new AMI for the demo workstation

	wombat list will show you all of the environments that can be built

	NOTE: wombat build bjc-infranodes will build all of the infranodes at once

	The infranodes cannot currently be built individually

	wombat build --parallel will build all AMIs in the environment in parallel

	This can take up to 45 mins so test accordingly before running this!

	Update the wombat.lock file by running wombat update lock

	This reads the packer logs and ‘locks’ the AMI(s) you just created into your configuration

	Update the stacks/bjc-demo.json file by running wombat update template

	This creates the CloudFormation template for spinning up the demo in AWS.

	Copy the new stacks/bjc-demo.json to stacks/bjc-demo-#{version}.json

	Where #{version} is the version contained in your wombat.yml file.

	Test your new environment by spinning up a demo using your version

	Log onto the stack you just created and do manual testing

	E.G. Try to run the demo, send a change through Automate Workflow, etc.

	If you find things wrong, go back to step #8 and fix whatever issues you found.

	If you things work as expected and you are happy with the change, commit your changes to your local branch and run a delivery review command to send your changes to the pipeline.

	Protip: Go to your new PR in waffle.io and add a Fixes line in for each card you are addressing

	See this PR [https://github.com/chef-cft/bjc/pull/197] as an example

	Bug your co-workers in #chef-demo-project to review, approve and deliver your change.

	Now your changes to the demo are stored both as code (Chef cookbooks) and built artifacts (AMI and CloudFormation template).

Special instructions for updating the “payload” cookbooks such as bjc-ecommerce.

If you need to update the content of the bjc-ecommerce cookbook or any other cookbooks that are part of the demo, there are some extra steps you need to take. The reason for this is we want to have a clean history inside the demo and have the cookbook properly synced with the Automate server in the demo. Here are the steps for updating bjc-ecommerce or other cookbooks:

	Build and test all your changes in test kitchen as usual.

	Spin up a demo and make all the exact same changes inside the demo. Probably easiest to just copy/paste whatever work you did into the demo.

	Push your change all the way through the demo to the ‘delivered’ stage.

	On the workstation, git checkout master and git pull delivery master to sync back from the Automate server. Now you are ready to zip up your changes.

	Go into the cookbook and look for the .git directory. It might be hidden. If it is enable ‘show hidden files’ in the file explorer. Right click it and do “Send to >> Compressed file”. Name the file git_dir.zip. You’ll need to get this file off the workstation and into the files/default directory in the bjc-ecommerce cookbook.

	Log onto the automate server. You simply ssh automate and sudo /bin/su - root from the workstation. Now that you have a root prompt run the following: automate-ctl create-backup. This will generate a new backup file in /var/opt/delivery/backups. It will have a long name with a timestamp. Take that file and rename it simply chef-automate-backup.zst. Put that file into the files/default directory in the bjc_automate cookbook. This restores the backup so the automate server comes up in the correct state with all data and accounts. IMPORTANT - don’t forget to update the checksum for this file in the default recipe of the bjc_automate cookbook. You need to use the sha256sum command on the backup file to generate a new checksum and update the bjc_automate::default recipe with the new checksum.

	If you made changes to Compliance (eg certs) ssh into it ssh compliance take a backup of it too, and place/overwrite the resulting file into bjc_compliance/files/default: sudo -u chef-pgsql /opt/chef-compliance/embedded/bin/pg_dump -c chef_compliance > compliance_backup.sql

	Commit your changes into the pipeline above as usual. Now when your demo is built it will download the latest cookbook code from our github repo, but you’ll still have all the git and delivery data baked in as well.

Delivery

This project uses Chef Delivery for continuous delivery. When you create
a new feature and submit it for review, Delivery automatically runs
lightweight tests and allows your colleagues to review your change. Once
approved, your change will be deployed to an acceptance environment
where tests can run against a working stack.

For comprehensive Delivery documentation,
visit the official documentation [https://docs.chef.io/start_delivery.html].

 PLEASE NOTE: This repo has been deprecated and is no longer mainted. For the Detect-Correct-Automate demo, please use the this repo instead.

Welcome to Project BJC

[image: _images/hknf3Wx.jpg]Magic!

Here you will find instructions on how to spin up a standard Chef Demo environment in AWS or Azure, as well as instructions on how you can contribute to demo development. This document assumes you have basic familiarity with AWS, Azure, Cloudformation, ARM templates, and SSH keys. This project is maintained by the Solutions Architects team at Chef. Issues, pull requests and general feedback are all welcome. You may email us at saleseng [at] chef.io if you want to get in touch.

The talk track script for the risk demo is located here [https://github.com/chef-cft/bjc/blob/master/AUTOMATE_RISK_DEMO_SCRIPT]

A project changelog can be found in CHANGELOG.md [https://github.com/chef-cft/bjc/blob/master/CHANGELOG].

What is BJC?

BJC stands for Blue Jean Committee. It’s also the code name for the Chef Demo project.

How do I spin up a demo?

First, setup your environment:

	Clone this repository: git clone https://github.com/chef-cft/bjc

	Change into the bjc directory: cd bjc

	Set environment variables for your SSH key name and path, like so. This must match one of the authorized ec2 ssh keys in your AWS account. This is still required when lauching on Azure, but the key is simply ignored.

	Put these lines into your ~/.bashrc or ~/.zshrc if you want to make them permanent.

export EC2_SSH_KEY_NAME=binamov-sa
export EC2_SSH_KEY_PATH=~/.ssh/binamov-sa.pem

Next, follow these steps to spin up your own dev/test environment:

The demo environment will provision in AWS or Azure fairly quickly, usually within a few minutes. Once the environment is up there is a startup script you must run to prep the demo. This script can take 10 minutes or more to complete. Be sure to give yourself plenty of time prior to the start of your demo for the environment to spin up and for the startup script to run to completion. We generally recommend setting up at least 30 minutes before your demo to ensure you have enough time.

	git pull to fetch the latest changes.

	Use the build_demo.sh script in the ./bin directory to stand up a stack!

	Your command will look something like the command below. If you get an error, please read the error message as changes are routinely made!

./bin/build_demo.sh <cloud_platform> <demo-version> <customer_name> <EC2 key pair name> <TTL> <your_name> <departmenet_name> <region>

For example:

./bin/build_demo.sh aws stable 'RobCo' rycar_sa 4 'Nick Rycar' 'Solutions Architects' 'NA-Central'

./bin/build_demo.sh azure stable 'RobCo' rycar_sa 4 'Nick Rycar' 'Solutions Architects' 'NA-Central'

./bin/build_demo.sh aws 4.6.1 'RobCo' rycar_sa 4 'Nick Rycar' 'Solutions Architects' 'NA-Central'

./bin/build_demo.sh azure 4.6.1 'RobCo' rycar_sa 4 'Nick Rycar' 'Solutions Architects' 'NA-Central'

./bin/build_demo.ps1 aws stable 'RobCo' rycar_sa 4 'Nick Rycar' 'Solutions Architects' 'NA-Central'

./bin/build_demo.ps1 azure stable 'RobCo' rycar_sa 4 'Nick Rycar' 'Solutions Architects' 'NA-Central'

./bin/build_demo.ps1 aws 4.6.1 'RobCo' rycar_sa 4 'Nick Rycar' 'Solutions Architects' 'NA-Central'

./bin/build_demo.ps1 azure 4.6.1 'RobCo' rycar_sa 4 'Nick Rycar' 'Solutions Architects' 'NA-Central'

If you receive an error similar to the one below (even when spinning up on Azure), it means that you have selected a version of the demo that doesn’t exist (or hasn’t been fully published for consumption). HINT: stable always works as a version!

An error occurred (ValidationError) when calling the CreateStack operation: S3 error: The specified key does not exist.

	Use the get_workstation_ip.sh script (Mac/Linux only for now) to get the IP of your workstation

./bin/get_workstation_ip.sh
StackName WorkstationIP
jmery-GMTest-Chef-Demo-20180530T162128Z 34.212.179.198

	Log onto your stack’s workstation

	Workstation credentials are pinned in #chef-demo-project slack channel.

	If you are not a Chef employee please contact saleseng@chef.io to get the username and password.

	Workstation now supports RDP over HTTPS to help with access where port 3389 may be blocked.

	Optional: If you want to use Test Kitchen inside your demo environment, you’ll need to go into the AWS control panel, select EC2, and then go into ‘Key Pairs’. Choose “Import New Key Pair” and import the chef_demo.pub file stored in this repo into the us-west-2 region of your account. Alternatively you can simply edit the existing .kitchen.yml file inside the cookbook with any valid SSH key name in us-west-2 in your account.

	Optional: To generate CCRs quickly, double-click the ‘Generate_CCRs.ps1’ link on the desktop. It will trigger client runs on all nodes until closed.

	Optional: To start a DCA demo, run either the Start_DCA.ps1 or Start_CM.ps1 scripts located in C:\Users\chef\ . This will rebootstrap the environment to prepare for the DCA or Cloud MIgration demos respectively.

	Report any issues you find here: https://waffle.io/chef-cft/bjc

build-cookbook

A build cookbook for running the parent project through Chef Delivery

This build cookbook should be customized to suit the needs of the parent project. Using this cookbook can be done outside of Chef Delivery, too. If the parent project is a Chef cookbook, we’ve detected that and “wrapped” delivery-truck [https://github.com/chef-cookbooks/delivery-truck]. That means it is a dependency, and each of its pipeline phase recipes is included in the appropriate phase recipes in this cookbook. If the parent project is not a cookbook, it’s left as an exercise to the reader to customize the recipes as needed for each phase in the pipeline.

.delivery/config.json

In the parent directory to this build-cookbook, the config.json can be modified as necessary. For example, phases can be skipped, publishing information can be added, and so on. Refer to customer support or the Chef Delivery documentation for assistance on what options are available for this configuration.

Test Kitchen - Local Verify Testing

This cookbook also has a .kitchen.yml which can be used to create local build nodes with Test Kitchen to perform the verification phases, unit, syntax, and lint. When running kitchen converge, the instances will be set up like Chef Delivery “build nodes” with the delivery_build cookbook [https://github.com/chef-cookbooks/delivery_build]. The reason for this is to make sure that the same exact kind of nodes are used by this build cookbook are run on the local workstation as would run Delivery. It will run delivery job verify PHASE for the parent project.

Modify the .kitchen.yml if necessary to change the platforms or other configuration to run the verify phases. After making changes in the parent project, cd into this directory (.delivery/build-cookbook), and run:

kitchen test

Recipes

Each of the recipes in this build-cookbook are run in the named phase during the Chef Delivery pipeline. The unit, syntax, and lint recipes are additionally run when using Test Kitchen for local testing as noted in the above section.

Making Changes - Cookbook Example

When making changes in the parent project (that which lives in ../.. from this directory), or in the recipes in this build cookbook, there is a bespoke workflow for Chef Delivery. As an example, we’ll discuss a Chef Cookbook as the parent.

First, create a new branch for the changes.

git checkout -b testing-build-cookbook

Next, increment the version in the metadata.rb. This should be in the parent, not in this, the build-cookbook. If this is not done, the verify phase will fail.

% git diff
<SNIP>
-version '0.1.0'
+version '0.1.1'

The change we’ll use for an example is to install the zsh package. Write a failing ChefSpec in the cookbook project’s spec/unit/recipes/default_spec.rb.

require 'spec_helper'

describe 'godzilla::default' do
 context 'When all attributes are default, on an unspecified platform' do
 let(:chef_run) do
 runner = ChefSpec::ServerRunner.new
 runner.converge(described_recipe)
 end

 it 'installs zsh' do
 expect(chef_run).to install_package('zsh')
 end
 end
end

Commit the local changes as work in progress. The delivery job expects to use a clean git repository.

git add ../..
git commit -m 'WIP: Testing changes'

From this directory (.delivery/build-cookbook, relative to the parent cookbook project), run

cd .delivery/build-cookbook
kitchen converge

This will take some time at first, because the VMs need to be created, Chef installed, the Delivery CLI installed, etc. Later runs will be faster until they are destroyed. It will also fail on the first VM, as expected, because we wrote the test first. Now edit the parent cookbook project’s default recipe to install zsh.

cd ../../
$EDITOR/recipes/default.rb

It should look like this:

package 'zsh'

Create another commit.

git add .
git commit -m 'WIP: Install zsh in default recipe'

Now rerun kitchen from the build-cookbook.

cd .delivery/build-cookbook
kitchen converge

This will take awhile because it will now pass on the first VM, and then create the second VM. We should have warned you this was a good time for a coffee break.

Recipe: test::default

- execute HOME=/home/vagrant delivery job verify unit --server localhost --ent test --org kitchen
 * execute[HOME=/home/vagrant delivery job verify lint --server localhost --ent test --org kitchen] action run
 - execute HOME=/home/vagrant delivery job verify lint --server localhost --ent test --org kitchen

 - execute HOME=/home/vagrant delivery job verify syntax --server localhost --ent test --org kitchen

Running handlers:
Running handlers complete
Chef Client finished, 3/32 resources updated in 54.665445968 seconds
Finished converging <default-centos-71> (1m26.83s).

Victory is ours! Our verify phase passed on the build nodes.

We are ready to run this through our Delivery pipeline. Simply run delivery review on the local system from the parent project, and it will open a browser window up to the change we just added.

cd ../..
delivery review

FAQ

Why don’t I just run rspec, foodcritic/rubocop, knife cookbook test on my local system?

An objection to the Test Kitchen approach is that it is much faster to run the unit, lint, and syntax commands for the project on the local system. That is totally true, and also totally valid. Do that for the really fast feedback loop. However, the dance we do with Test Kitchen brings a much higher degree of confidence in the changes we’re making, that everything will run on the build nodes in Chef Delivery. We strongly encourage this approach before actually pushing the changes to Delivery.

Why do I have to make a commit every time?

When running delivery job, it expects to merge the commit for the changeset against the clean master branch. If we don’t save our progress by making a commit, our local changes aren’t run through delivery job in the Test Kitchen build instances. We can always perform an interactive rebase, and modify the original changeset message in Delivery with delivery review --edit. The latter won’t modify the git commits, only the changeset in Delivery.

What do I do next?

Make changes in the cookbook project as required for organizational goals and needs. Modify the build-cookbook as necessary for the pipeline phases that the cookbook should go through.

What if I get stuck?

Contact Chef Support, or your Chef Customer Success team and they will help you get unstuck.

audit-wrapper

TODO: Enter the cookbook description here.

Delivery

This project uses Chef Delivery for continuous delivery. When you create
a new feature and submit it for review, Delivery automatically runs
lightweight tests and allows your colleagues to review your change. Once
approved, your change will be deployed to an acceptance environment
where tests can run against a working stack.

For comprehensive Delivery documentation,
visit the official documentation [https://docs.chef.io/start_delivery.html].

base-web

Installs a web server.

Delivery

This project uses Chef Delivery for continuous delivery. When you create
a new feature and submit it for review, Delivery automatically runs
lightweight tests and allows your colleagues to review your change. Once
approved, your change will be deployed to an acceptance environment
where tests can run against a working stack.

For comprehensive Delivery documentation,
visit the official documentation [https://docs.chef.io/start_delivery.html].

bjc-ecommerce

TODO: Enter the cookbook description here.

build_cookbook

A build cookbook for running the parent project through Chef Delivery

This build cookbook should be customized to suit the needs of the parent project. Using this cookbook can be done outside of Chef Delivery, too. If the parent project is a Chef cookbook, we’ve detected that and “wrapped” delivery-truck [https://github.com/chef-cookbooks/delivery-truck]. That means it is a dependency, and each of its pipeline phase recipes is included in the appropriate phase recipes in this cookbook. If the parent project is not a cookbook, it’s left as an exercise to the reader to customize the recipes as needed for each phase in the pipeline.

.delivery/config.json

In the parent directory to this build_cookbook, the config.json can be modified as necessary. For example, phases can be skipped, publishing information can be added, and so on. Refer to customer support or the Chef Delivery documentation for assistance on what options are available for this configuration.

Test Kitchen - Local Verify Testing

This cookbook also has a .kitchen.yml which can be used to create local build nodes with Test Kitchen to perform the verification phases, unit, syntax, and lint. When running kitchen converge, the instances will be set up like Chef Delivery “build nodes” with the delivery_build cookbook [https://github.com/chef-cookbooks/delivery_build]. The reason for this is to make sure that the same exact kind of nodes are used by this build cookbook are run on the local workstation as would run Delivery. It will run delivery job verify PHASE for the parent project.

Modify the .kitchen.yml if necessary to change the platforms or other configuration to run the verify phases. After making changes in the parent project, cd into this directory (.delivery/build_cookbook), and run:

kitchen test

Recipes

Each of the recipes in this build_cookbook are run in the named phase during the Chef Delivery pipeline. The unit, syntax, and lint recipes are additionally run when using Test Kitchen for local testing as noted in the above section.

Making Changes - Cookbook Example

When making changes in the parent project (that which lives in ../.. from this directory), or in the recipes in this build cookbook, there is a bespoke workflow for Chef Delivery. As an example, we’ll discuss a Chef Cookbook as the parent.

First, create a new branch for the changes.

git checkout -b testing-build-cookbook

Next, increment the version in the metadata.rb. This should be in the parent, not in this, the build_cookbook. If this is not done, the verify phase will fail.

% git diff
<SNIP>
-version '0.1.0'
+version '0.1.1'

The change we’ll use for an example is to install the zsh package. Write a failing ChefSpec in the cookbook project’s spec/unit/recipes/default_spec.rb.

require 'spec_helper'

describe 'godzilla::default' do
 context 'When all attributes are default, on an unspecified platform' do
 let(:chef_run) do
 runner = ChefSpec::ServerRunner.new
 runner.converge(described_recipe)
 end

 it 'installs zsh' do
 expect(chef_run).to install_package('zsh')
 end
 end
end

Commit the local changes as work in progress. The delivery job expects to use a clean git repository.

git add ../..
git commit -m 'WIP: Testing changes'

From this directory (.delivery/build_cookbook, relative to the parent cookbook project), run

cd .delivery/build_cookbook
kitchen converge

This will take some time at first, because the VMs need to be created, Chef installed, the Delivery CLI installed, etc. Later runs will be faster until they are destroyed. It will also fail on the first VM, as expected, because we wrote the test first. Now edit the parent cookbook project’s default recipe to install zsh.

cd ../../
$EDITOR/recipes/default.rb

It should look like this:

package 'zsh'

Create another commit.

git add .
git commit -m 'WIP: Install zsh in default recipe'

Now rerun kitchen from the build_cookbook.

cd .delivery/build_cookbook
kitchen converge

This will take awhile because it will now pass on the first VM, and then create the second VM. We should have warned you this was a good time for a coffee break.

Recipe: test::default

- execute HOME=/home/vagrant delivery job verify unit --server localhost --ent test --org kitchen
 * execute[HOME=/home/vagrant delivery job verify lint --server localhost --ent test --org kitchen] action run
 - execute HOME=/home/vagrant delivery job verify lint --server localhost --ent test --org kitchen

 - execute HOME=/home/vagrant delivery job verify syntax --server localhost --ent test --org kitchen

Running handlers:
Running handlers complete
Chef Client finished, 3/32 resources updated in 54.665445968 seconds
Finished converging <default-centos-71> (1m26.83s).

Victory is ours! Our verify phase passed on the build nodes.

We are ready to run this through our Delivery pipeline. Simply run delivery review on the local system from the parent project, and it will open a browser window up to the change we just added.

cd ../..
delivery review

FAQ

Why don’t I just run rspec and foodcritic/rubocop on my local system?

An objection to the Test Kitchen approach is that it is much faster to run the unit, lint, and syntax commands for the project on the local system. That is totally true, and also totally valid. Do that for the really fast feedback loop. However, the dance we do with Test Kitchen brings a much higher degree of confidence in the changes we’re making, that everything will run on the build nodes in Chef Delivery. We strongly encourage this approach before actually pushing the changes to Delivery.

Why do I have to make a commit every time?

When running delivery job, it expects to merge the commit for the changeset against the clean master branch. If we don’t save our progress by making a commit, our local changes aren’t run through delivery job in the Test Kitchen build instances. We can always perform an interactive rebase, and modify the original changeset message in Delivery with delivery review --edit. The latter won’t modify the git commits, only the changeset in Delivery.

What do I do next?

Make changes in the cookbook project as required for organizational goals and needs. Modify the build_cookbook as necessary for the pipeline phases that the cookbook should go through.

What if I get stuck?

Contact Chef Support, or your Chef Customer Success team and they will help you get unstuck.

bjc_automate

TODO: Enter the cookbook description here.

test

TODO: Enter the cookbook description here.

Delivery

This project uses Chef Delivery for continuous delivery. When you create
a new feature and submit it for review, Delivery automatically runs
lightweight tests and allows your colleagues to review your change. Once
approved, your change will be deployed to an acceptance environment
where tests can run against a working stack.

For comprehensive Delivery documentation,
visit the official documentation [https://docs.chef.io/start_delivery.html].

bjc_bass

This is a Base cookbook for the BJC demo cluster.

bjc_build_node

Creates build nodes for the BJC demo. No runners!

test

TODO: Enter the cookbook description here.

bjc_chef_server

TODO: Enter the cookbook description here.

test

TODO: Enter the cookbook description here.

bjc_community

This cookbook is used to add cookbooks and their dependencies to the BJC Chef Server. If you have a particular cookbook that is not part of the DCA demo, Cloud Migration demo, Risk demo, or EMEA demo that you want to pull in, simply update the metadata.rb or the Berksfile in this cookbook, and all future builds will include that cookbook and it’s dependencies.

This cookbook currently pulls in the following cookbooks:

	chef-client cookbook [https://github.com/chef-cookbooks/chef-client]

	Habitat cookbook [https://github.com/chef-cookbooks/habitat]

build_cookbook

A build cookbook for running the parent project through Chef Delivery

This build cookbook should be customized to suit the needs of the parent project. Using this cookbook can be done outside of Chef Delivery, too. If the parent project is a Chef cookbook, we’ve detected that and “wrapped” delivery-truck [https://github.com/chef-cookbooks/delivery-truck]. That means it is a dependency, and each of its pipeline phase recipes is included in the appropriate phase recipes in this cookbook. If the parent project is not a cookbook, it’s left as an exercise to the reader to customize the recipes as needed for each phase in the pipeline.

.delivery/config.json

In the parent directory to this build_cookbook, the config.json can be modified as necessary. For example, phases can be skipped, publishing information can be added, and so on. Refer to customer support or the Chef Delivery documentation for assistance on what options are available for this configuration.

Test Kitchen - Local Verify Testing

This cookbook also has a .kitchen.yml which can be used to create local build nodes with Test Kitchen to perform the verification phases, unit, syntax, and lint. When running kitchen converge, the instances will be set up like Chef Delivery “build nodes” with the delivery_build cookbook [https://github.com/chef-cookbooks/delivery_build]. The reason for this is to make sure that the same exact kind of nodes are used by this build cookbook are run on the local workstation as would run Delivery. It will run delivery job verify PHASE for the parent project.

Modify the .kitchen.yml if necessary to change the platforms or other configuration to run the verify phases. After making changes in the parent project, cd into this directory (.delivery/build_cookbook), and run:

kitchen test

Recipes

Each of the recipes in this build_cookbook are run in the named phase during the Chef Delivery pipeline. The unit, syntax, and lint recipes are additionally run when using Test Kitchen for local testing as noted in the above section.

Making Changes - Cookbook Example

When making changes in the parent project (that which lives in ../.. from this directory), or in the recipes in this build cookbook, there is a bespoke workflow for Chef Delivery. As an example, we’ll discuss a Chef Cookbook as the parent.

First, create a new branch for the changes.

git checkout -b testing-build-cookbook

Next, increment the version in the metadata.rb. This should be in the parent, not in this, the build_cookbook. If this is not done, the verify phase will fail.

% git diff
<SNIP>
-version '0.1.0'
+version '0.1.1'

The change we’ll use for an example is to install the zsh package. Write a failing ChefSpec in the cookbook project’s spec/unit/recipes/default_spec.rb.

require 'spec_helper'

describe 'godzilla::default' do
 context 'When all attributes are default, on Ubuntu 16.04' do
 let(:chef_run) do
 runner = ChefSpec::ServerRunner.new(platform: 'ubuntu', version: '16.04')
 runner.converge(described_recipe)
 end

 it 'installs zsh' do
 expect(chef_run).to install_package('zsh')
 end
 end
end

Commit the local changes as work in progress. The delivery job expects to use a clean git repository.

git add ../..
git commit -m 'WIP: Testing changes'

From this directory (.delivery/build_cookbook, relative to the parent cookbook project), run

cd .delivery/build_cookbook
kitchen converge

This will take some time at first, because the VMs need to be created, Chef installed, the Delivery CLI installed, etc. Later runs will be faster until they are destroyed. It will also fail on the first VM, as expected, because we wrote the test first. Now edit the parent cookbook project’s default recipe to install zsh.

cd ../../
$EDITOR/recipes/default.rb

It should look like this:

package 'zsh'

Create another commit.

git add .
git commit -m 'WIP: Install zsh in default recipe'

Now rerun kitchen from the build_cookbook.

cd .delivery/build_cookbook
kitchen converge

This will take awhile because it will now pass on the first VM, and then create the second VM. We should have warned you this was a good time for a coffee break.

Recipe: test::default

- execute HOME=/home/vagrant delivery job verify unit --server localhost --ent test --org kitchen
 * execute[HOME=/home/vagrant delivery job verify lint --server localhost --ent test --org kitchen] action run
 - execute HOME=/home/vagrant delivery job verify lint --server localhost --ent test --org kitchen

 - execute HOME=/home/vagrant delivery job verify syntax --server localhost --ent test --org kitchen

Running handlers:
Running handlers complete
Chef Client finished, 3/32 resources updated in 54.665445968 seconds
Finished converging <default-centos-71> (1m26.83s).

Victory is ours! Our verify phase passed on the build nodes.

We are ready to run this through our Delivery pipeline. Simply run delivery review on the local system from the parent project, and it will open a browser window up to the change we just added.

cd ../..
delivery review

FAQ

Why don’t I just run rspec and foodcritic/rubocop on my local system?

An objection to the Test Kitchen approach is that it is much faster to run the unit, lint, and syntax commands for the project on the local system. That is totally true, and also totally valid. Do that for the really fast feedback loop. However, the dance we do with Test Kitchen brings a much higher degree of confidence in the changes we’re making, that everything will run on the build nodes in Chef Delivery. We strongly encourage this approach before actually pushing the changes to Delivery.

Why do I have to make a commit every time?

When running delivery job, it expects to merge the commit for the changeset against the clean master branch. If we don’t save our progress by making a commit, our local changes aren’t run through delivery job in the Test Kitchen build instances. We can always perform an interactive rebase, and modify the original changeset message in Delivery with delivery review --edit. The latter won’t modify the git commits, only the changeset in Delivery.

What do I do next?

Make changes in the cookbook project as required for organizational goals and needs. Modify the build_cookbook as necessary for the pipeline phases that the cookbook should go through.

What if I get stuck?

Contact Chef Support, or your Chef Customer Success team and they will help you get unstuck.

bjc_compliance

TODO: Enter the cookbook description here.

test

TODO: Enter the cookbook description here.

bjc_infranodes

This cookbook makes awesome infranodes.

test

TODO: Enter the cookbook description here.

bjc_jenkins

TODO: Enter the cookbook description here.

bjc_workstation

TODO: Enter the cookbook description here

test

TODO: Enter the cookbook description here.

cm_demo

TODO: Enter the cookbook description here.

build_cookbook

A build cookbook for running the parent project through Chef Delivery

This build cookbook should be customized to suit the needs of the parent project. Using this cookbook can be done outside of Chef Delivery, too. If the parent project is a Chef cookbook, we’ve detected that and “wrapped” delivery-truck [https://github.com/chef-cookbooks/delivery-truck]. That means it is a dependency, and each of its pipeline phase recipes is included in the appropriate phase recipes in this cookbook. If the parent project is not a cookbook, it’s left as an exercise to the reader to customize the recipes as needed for each phase in the pipeline.

.delivery/config.json

In the parent directory to this build_cookbook, the config.json can be modified as necessary. For example, phases can be skipped, publishing information can be added, and so on. Refer to customer support or the Chef Delivery documentation for assistance on what options are available for this configuration.

Test Kitchen - Local Verify Testing

This cookbook also has a .kitchen.yml which can be used to create local build nodes with Test Kitchen to perform the verification phases, unit, syntax, and lint. When running kitchen converge, the instances will be set up like Chef Delivery “build nodes” with the delivery_build cookbook [https://github.com/chef-cookbooks/delivery_build]. The reason for this is to make sure that the same exact kind of nodes are used by this build cookbook are run on the local workstation as would run Delivery. It will run delivery job verify PHASE for the parent project.

Modify the .kitchen.yml if necessary to change the platforms or other configuration to run the verify phases. After making changes in the parent project, cd into this directory (.delivery/build_cookbook), and run:

kitchen test

Recipes

Each of the recipes in this build_cookbook are run in the named phase during the Chef Delivery pipeline. The unit, syntax, and lint recipes are additionally run when using Test Kitchen for local testing as noted in the above section.

Making Changes - Cookbook Example

When making changes in the parent project (that which lives in ../.. from this directory), or in the recipes in this build cookbook, there is a bespoke workflow for Chef Delivery. As an example, we’ll discuss a Chef Cookbook as the parent.

First, create a new branch for the changes.

git checkout -b testing-build-cookbook

Next, increment the version in the metadata.rb. This should be in the parent, not in this, the build_cookbook. If this is not done, the verify phase will fail.

% git diff
<SNIP>
-version '0.1.0'
+version '0.1.1'

The change we’ll use for an example is to install the zsh package. Write a failing ChefSpec in the cookbook project’s spec/unit/recipes/default_spec.rb.

require 'spec_helper'

describe 'godzilla::default' do
 context 'When all attributes are default, on Ubuntu 16.04' do
 let(:chef_run) do
 runner = ChefSpec::ServerRunner.new(platform: 'ubuntu', version: '16.04')
 runner.converge(described_recipe)
 end

 it 'installs zsh' do
 expect(chef_run).to install_package('zsh')
 end
 end
end

Commit the local changes as work in progress. The delivery job expects to use a clean git repository.

git add ../..
git commit -m 'WIP: Testing changes'

From this directory (.delivery/build_cookbook, relative to the parent cookbook project), run

cd .delivery/build_cookbook
kitchen converge

This will take some time at first, because the VMs need to be created, Chef installed, the Delivery CLI installed, etc. Later runs will be faster until they are destroyed. It will also fail on the first VM, as expected, because we wrote the test first. Now edit the parent cookbook project’s default recipe to install zsh.

cd ../../
$EDITOR/recipes/default.rb

It should look like this:

package 'zsh'

Create another commit.

git add .
git commit -m 'WIP: Install zsh in default recipe'

Now rerun kitchen from the build_cookbook.

cd .delivery/build_cookbook
kitchen converge

This will take awhile because it will now pass on the first VM, and then create the second VM. We should have warned you this was a good time for a coffee break.

Recipe: test::default

- execute HOME=/home/vagrant delivery job verify unit --server localhost --ent test --org kitchen
 * execute[HOME=/home/vagrant delivery job verify lint --server localhost --ent test --org kitchen] action run
 - execute HOME=/home/vagrant delivery job verify lint --server localhost --ent test --org kitchen

 - execute HOME=/home/vagrant delivery job verify syntax --server localhost --ent test --org kitchen

Running handlers:
Running handlers complete
Chef Client finished, 3/32 resources updated in 54.665445968 seconds
Finished converging <default-centos-71> (1m26.83s).

Victory is ours! Our verify phase passed on the build nodes.

We are ready to run this through our Delivery pipeline. Simply run delivery review on the local system from the parent project, and it will open a browser window up to the change we just added.

cd ../..
delivery review

FAQ

Why don’t I just run rspec and foodcritic/rubocop on my local system?

An objection to the Test Kitchen approach is that it is much faster to run the unit, lint, and syntax commands for the project on the local system. That is totally true, and also totally valid. Do that for the really fast feedback loop. However, the dance we do with Test Kitchen brings a much higher degree of confidence in the changes we’re making, that everything will run on the build nodes in Chef Delivery. We strongly encourage this approach before actually pushing the changes to Delivery.

Why do I have to make a commit every time?

When running delivery job, it expects to merge the commit for the changeset against the clean master branch. If we don’t save our progress by making a commit, our local changes aren’t run through delivery job in the Test Kitchen build instances. We can always perform an interactive rebase, and modify the original changeset message in Delivery with delivery review --edit. The latter won’t modify the git commits, only the changeset in Delivery.

What do I do next?

Make changes in the cookbook project as required for organizational goals and needs. Modify the build_cookbook as necessary for the pipeline phases that the cookbook should go through.

What if I get stuck?

Contact Chef Support, or your Chef Customer Success team and they will help you get unstuck.

dca_audit_baseline

TODO: Enter the cookbook description here.

build_cookbook

A build cookbook for running the parent project through Chef Delivery

This build cookbook should be customized to suit the needs of the parent project. Using this cookbook can be done outside of Chef Delivery, too. If the parent project is a Chef cookbook, we’ve detected that and “wrapped” delivery-truck [https://github.com/chef-cookbooks/delivery-truck]. That means it is a dependency, and each of its pipeline phase recipes is included in the appropriate phase recipes in this cookbook. If the parent project is not a cookbook, it’s left as an exercise to the reader to customize the recipes as needed for each phase in the pipeline.

.delivery/config.json

In the parent directory to this build_cookbook, the config.json can be modified as necessary. For example, phases can be skipped, publishing information can be added, and so on. Refer to customer support or the Chef Delivery documentation for assistance on what options are available for this configuration.

Test Kitchen - Local Verify Testing

This cookbook also has a .kitchen.yml which can be used to create local build nodes with Test Kitchen to perform the verification phases, unit, syntax, and lint. When running kitchen converge, the instances will be set up like Chef Delivery “build nodes” with the delivery_build cookbook [https://github.com/chef-cookbooks/delivery_build]. The reason for this is to make sure that the same exact kind of nodes are used by this build cookbook are run on the local workstation as would run Delivery. It will run delivery job verify PHASE for the parent project.

Modify the .kitchen.yml if necessary to change the platforms or other configuration to run the verify phases. After making changes in the parent project, cd into this directory (.delivery/build_cookbook), and run:

kitchen test

Recipes

Each of the recipes in this build_cookbook are run in the named phase during the Chef Delivery pipeline. The unit, syntax, and lint recipes are additionally run when using Test Kitchen for local testing as noted in the above section.

Making Changes - Cookbook Example

When making changes in the parent project (that which lives in ../.. from this directory), or in the recipes in this build cookbook, there is a bespoke workflow for Chef Delivery. As an example, we’ll discuss a Chef Cookbook as the parent.

First, create a new branch for the changes.

git checkout -b testing-build-cookbook

Next, increment the version in the metadata.rb. This should be in the parent, not in this, the build_cookbook. If this is not done, the verify phase will fail.

% git diff
<SNIP>
-version '0.1.0'
+version '0.1.1'

The change we’ll use for an example is to install the zsh package. Write a failing ChefSpec in the cookbook project’s spec/unit/recipes/default_spec.rb.

require 'spec_helper'

describe 'godzilla::default' do
 context 'When all attributes are default, on Ubuntu 16.04' do
 let(:chef_run) do
 runner = ChefSpec::ServerRunner.new(platform: 'ubuntu', version: '16.04')
 runner.converge(described_recipe)
 end

 it 'installs zsh' do
 expect(chef_run).to install_package('zsh')
 end
 end
end

Commit the local changes as work in progress. The delivery job expects to use a clean git repository.

git add ../..
git commit -m 'WIP: Testing changes'

From this directory (.delivery/build_cookbook, relative to the parent cookbook project), run

cd .delivery/build_cookbook
kitchen converge

This will take some time at first, because the VMs need to be created, Chef installed, the Delivery CLI installed, etc. Later runs will be faster until they are destroyed. It will also fail on the first VM, as expected, because we wrote the test first. Now edit the parent cookbook project’s default recipe to install zsh.

cd ../../
$EDITOR/recipes/default.rb

It should look like this:

package 'zsh'

Create another commit.

git add .
git commit -m 'WIP: Install zsh in default recipe'

Now rerun kitchen from the build_cookbook.

cd .delivery/build_cookbook
kitchen converge

This will take awhile because it will now pass on the first VM, and then create the second VM. We should have warned you this was a good time for a coffee break.

Recipe: test::default

- execute HOME=/home/vagrant delivery job verify unit --server localhost --ent test --org kitchen
 * execute[HOME=/home/vagrant delivery job verify lint --server localhost --ent test --org kitchen] action run
 - execute HOME=/home/vagrant delivery job verify lint --server localhost --ent test --org kitchen

 - execute HOME=/home/vagrant delivery job verify syntax --server localhost --ent test --org kitchen

Running handlers:
Running handlers complete
Chef Client finished, 3/32 resources updated in 54.665445968 seconds
Finished converging <default-centos-71> (1m26.83s).

Victory is ours! Our verify phase passed on the build nodes.

We are ready to run this through our Delivery pipeline. Simply run delivery review on the local system from the parent project, and it will open a browser window up to the change we just added.

cd ../..
delivery review

FAQ

Why don’t I just run rspec and foodcritic/rubocop on my local system?

An objection to the Test Kitchen approach is that it is much faster to run the unit, lint, and syntax commands for the project on the local system. That is totally true, and also totally valid. Do that for the really fast feedback loop. However, the dance we do with Test Kitchen brings a much higher degree of confidence in the changes we’re making, that everything will run on the build nodes in Chef Delivery. We strongly encourage this approach before actually pushing the changes to Delivery.

Why do I have to make a commit every time?

When running delivery job, it expects to merge the commit for the changeset against the clean master branch. If we don’t save our progress by making a commit, our local changes aren’t run through delivery job in the Test Kitchen build instances. We can always perform an interactive rebase, and modify the original changeset message in Delivery with delivery review --edit. The latter won’t modify the git commits, only the changeset in Delivery.

What do I do next?

Make changes in the cookbook project as required for organizational goals and needs. Modify the build_cookbook as necessary for the pipeline phases that the cookbook should go through.

What if I get stuck?

Contact Chef Support, or your Chef Customer Success team and they will help you get unstuck.

dca_demo

TODO: Enter the cookbook description here.

build_cookbook

A build cookbook for running the parent project through Chef Delivery

This build cookbook should be customized to suit the needs of the parent project. Using this cookbook can be done outside of Chef Delivery, too. If the parent project is a Chef cookbook, we’ve detected that and “wrapped” delivery-truck [https://github.com/chef-cookbooks/delivery-truck]. That means it is a dependency, and each of its pipeline phase recipes is included in the appropriate phase recipes in this cookbook. If the parent project is not a cookbook, it’s left as an exercise to the reader to customize the recipes as needed for each phase in the pipeline.

.delivery/config.json

In the parent directory to this build_cookbook, the config.json can be modified as necessary. For example, phases can be skipped, publishing information can be added, and so on. Refer to customer support or the Chef Delivery documentation for assistance on what options are available for this configuration.

Test Kitchen - Local Verify Testing

This cookbook also has a .kitchen.yml which can be used to create local build nodes with Test Kitchen to perform the verification phases, unit, syntax, and lint. When running kitchen converge, the instances will be set up like Chef Delivery “build nodes” with the delivery_build cookbook [https://github.com/chef-cookbooks/delivery_build]. The reason for this is to make sure that the same exact kind of nodes are used by this build cookbook are run on the local workstation as would run Delivery. It will run delivery job verify PHASE for the parent project.

Modify the .kitchen.yml if necessary to change the platforms or other configuration to run the verify phases. After making changes in the parent project, cd into this directory (.delivery/build_cookbook), and run:

kitchen test

Recipes

Each of the recipes in this build_cookbook are run in the named phase during the Chef Delivery pipeline. The unit, syntax, and lint recipes are additionally run when using Test Kitchen for local testing as noted in the above section.

Making Changes - Cookbook Example

When making changes in the parent project (that which lives in ../.. from this directory), or in the recipes in this build cookbook, there is a bespoke workflow for Chef Delivery. As an example, we’ll discuss a Chef Cookbook as the parent.

First, create a new branch for the changes.

git checkout -b testing-build-cookbook

Next, increment the version in the metadata.rb. This should be in the parent, not in this, the build_cookbook. If this is not done, the verify phase will fail.

% git diff
<SNIP>
-version '0.1.0'
+version '0.1.1'

The change we’ll use for an example is to install the zsh package. Write a failing ChefSpec in the cookbook project’s spec/unit/recipes/default_spec.rb.

require 'spec_helper'

describe 'godzilla::default' do
 context 'When all attributes are default, on Ubuntu 16.04' do
 let(:chef_run) do
 runner = ChefSpec::ServerRunner.new(platform: 'ubuntu', version: '16.04')
 runner.converge(described_recipe)
 end

 it 'installs zsh' do
 expect(chef_run).to install_package('zsh')
 end
 end
end

Commit the local changes as work in progress. The delivery job expects to use a clean git repository.

git add ../..
git commit -m 'WIP: Testing changes'

From this directory (.delivery/build_cookbook, relative to the parent cookbook project), run

cd .delivery/build_cookbook
kitchen converge

This will take some time at first, because the VMs need to be created, Chef installed, the Delivery CLI installed, etc. Later runs will be faster until they are destroyed. It will also fail on the first VM, as expected, because we wrote the test first. Now edit the parent cookbook project’s default recipe to install zsh.

cd ../../
$EDITOR/recipes/default.rb

It should look like this:

package 'zsh'

Create another commit.

git add .
git commit -m 'WIP: Install zsh in default recipe'

Now rerun kitchen from the build_cookbook.

cd .delivery/build_cookbook
kitchen converge

This will take awhile because it will now pass on the first VM, and then create the second VM. We should have warned you this was a good time for a coffee break.

Recipe: test::default

- execute HOME=/home/vagrant delivery job verify unit --server localhost --ent test --org kitchen
 * execute[HOME=/home/vagrant delivery job verify lint --server localhost --ent test --org kitchen] action run
 - execute HOME=/home/vagrant delivery job verify lint --server localhost --ent test --org kitchen

 - execute HOME=/home/vagrant delivery job verify syntax --server localhost --ent test --org kitchen

Running handlers:
Running handlers complete
Chef Client finished, 3/32 resources updated in 54.665445968 seconds
Finished converging <default-centos-71> (1m26.83s).

Victory is ours! Our verify phase passed on the build nodes.

We are ready to run this through our Delivery pipeline. Simply run delivery review on the local system from the parent project, and it will open a browser window up to the change we just added.

cd ../..
delivery review

FAQ

Why don’t I just run rspec and foodcritic/rubocop on my local system?

An objection to the Test Kitchen approach is that it is much faster to run the unit, lint, and syntax commands for the project on the local system. That is totally true, and also totally valid. Do that for the really fast feedback loop. However, the dance we do with Test Kitchen brings a much higher degree of confidence in the changes we’re making, that everything will run on the build nodes in Chef Delivery. We strongly encourage this approach before actually pushing the changes to Delivery.

Why do I have to make a commit every time?

When running delivery job, it expects to merge the commit for the changeset against the clean master branch. If we don’t save our progress by making a commit, our local changes aren’t run through delivery job in the Test Kitchen build instances. We can always perform an interactive rebase, and modify the original changeset message in Delivery with delivery review --edit. The latter won’t modify the git commits, only the changeset in Delivery.

What do I do next?

Make changes in the cookbook project as required for organizational goals and needs. Modify the build_cookbook as necessary for the pipeline phases that the cookbook should go through.

What if I get stuck?

Contact Chef Support, or your Chef Customer Success team and they will help you get unstuck.

dca_hardening_linux

TODO: Enter the cookbook description here.

build_cookbook

A build cookbook for running the parent project through Chef Delivery

This build cookbook should be customized to suit the needs of the parent project. Using this cookbook can be done outside of Chef Delivery, too. If the parent project is a Chef cookbook, we’ve detected that and “wrapped” delivery-truck [https://github.com/chef-cookbooks/delivery-truck]. That means it is a dependency, and each of its pipeline phase recipes is included in the appropriate phase recipes in this cookbook. If the parent project is not a cookbook, it’s left as an exercise to the reader to customize the recipes as needed for each phase in the pipeline.

.delivery/config.json

In the parent directory to this build_cookbook, the config.json can be modified as necessary. For example, phases can be skipped, publishing information can be added, and so on. Refer to customer support or the Chef Delivery documentation for assistance on what options are available for this configuration.

Test Kitchen - Local Verify Testing

This cookbook also has a .kitchen.yml which can be used to create local build nodes with Test Kitchen to perform the verification phases, unit, syntax, and lint. When running kitchen converge, the instances will be set up like Chef Delivery “build nodes” with the delivery_build cookbook [https://github.com/chef-cookbooks/delivery_build]. The reason for this is to make sure that the same exact kind of nodes are used by this build cookbook are run on the local workstation as would run Delivery. It will run delivery job verify PHASE for the parent project.

Modify the .kitchen.yml if necessary to change the platforms or other configuration to run the verify phases. After making changes in the parent project, cd into this directory (.delivery/build_cookbook), and run:

kitchen test

Recipes

Each of the recipes in this build_cookbook are run in the named phase during the Chef Delivery pipeline. The unit, syntax, and lint recipes are additionally run when using Test Kitchen for local testing as noted in the above section.

Making Changes - Cookbook Example

When making changes in the parent project (that which lives in ../.. from this directory), or in the recipes in this build cookbook, there is a bespoke workflow for Chef Delivery. As an example, we’ll discuss a Chef Cookbook as the parent.

First, create a new branch for the changes.

git checkout -b testing-build-cookbook

Next, increment the version in the metadata.rb. This should be in the parent, not in this, the build_cookbook. If this is not done, the verify phase will fail.

% git diff
<SNIP>
-version '0.1.0'
+version '0.1.1'

The change we’ll use for an example is to install the zsh package. Write a failing ChefSpec in the cookbook project’s spec/unit/recipes/default_spec.rb.

require 'spec_helper'

describe 'godzilla::default' do
 context 'When all attributes are default, on Ubuntu 16.04' do
 let(:chef_run) do
 runner = ChefSpec::ServerRunner.new(platform: 'ubuntu', version: '16.04')
 runner.converge(described_recipe)
 end

 it 'installs zsh' do
 expect(chef_run).to install_package('zsh')
 end
 end
end

Commit the local changes as work in progress. The delivery job expects to use a clean git repository.

git add ../..
git commit -m 'WIP: Testing changes'

From this directory (.delivery/build_cookbook, relative to the parent cookbook project), run

cd .delivery/build_cookbook
kitchen converge

This will take some time at first, because the VMs need to be created, Chef installed, the Delivery CLI installed, etc. Later runs will be faster until they are destroyed. It will also fail on the first VM, as expected, because we wrote the test first. Now edit the parent cookbook project’s default recipe to install zsh.

cd ../../
$EDITOR/recipes/default.rb

It should look like this:

package 'zsh'

Create another commit.

git add .
git commit -m 'WIP: Install zsh in default recipe'

Now rerun kitchen from the build_cookbook.

cd .delivery/build_cookbook
kitchen converge

This will take awhile because it will now pass on the first VM, and then create the second VM. We should have warned you this was a good time for a coffee break.

Recipe: test::default

- execute HOME=/home/vagrant delivery job verify unit --server localhost --ent test --org kitchen
 * execute[HOME=/home/vagrant delivery job verify lint --server localhost --ent test --org kitchen] action run
 - execute HOME=/home/vagrant delivery job verify lint --server localhost --ent test --org kitchen

 - execute HOME=/home/vagrant delivery job verify syntax --server localhost --ent test --org kitchen

Running handlers:
Running handlers complete
Chef Client finished, 3/32 resources updated in 54.665445968 seconds
Finished converging <default-centos-71> (1m26.83s).

Victory is ours! Our verify phase passed on the build nodes.

We are ready to run this through our Delivery pipeline. Simply run delivery review on the local system from the parent project, and it will open a browser window up to the change we just added.

cd ../..
delivery review

FAQ

Why don’t I just run rspec and foodcritic/rubocop on my local system?

An objection to the Test Kitchen approach is that it is much faster to run the unit, lint, and syntax commands for the project on the local system. That is totally true, and also totally valid. Do that for the really fast feedback loop. However, the dance we do with Test Kitchen brings a much higher degree of confidence in the changes we’re making, that everything will run on the build nodes in Chef Delivery. We strongly encourage this approach before actually pushing the changes to Delivery.

Why do I have to make a commit every time?

When running delivery job, it expects to merge the commit for the changeset against the clean master branch. If we don’t save our progress by making a commit, our local changes aren’t run through delivery job in the Test Kitchen build instances. We can always perform an interactive rebase, and modify the original changeset message in Delivery with delivery review --edit. The latter won’t modify the git commits, only the changeset in Delivery.

What do I do next?

Make changes in the cookbook project as required for organizational goals and needs. Modify the build_cookbook as necessary for the pipeline phases that the cookbook should go through.

What if I get stuck?

Contact Chef Support, or your Chef Customer Success team and they will help you get unstuck.

dca_hardening_windows

TODO: Enter the cookbook description here.

build_cookbook

A build cookbook for running the parent project through Chef Delivery

This build cookbook should be customized to suit the needs of the parent project. Using this cookbook can be done outside of Chef Delivery, too. If the parent project is a Chef cookbook, we’ve detected that and “wrapped” delivery-truck [https://github.com/chef-cookbooks/delivery-truck]. That means it is a dependency, and each of its pipeline phase recipes is included in the appropriate phase recipes in this cookbook. If the parent project is not a cookbook, it’s left as an exercise to the reader to customize the recipes as needed for each phase in the pipeline.

.delivery/config.json

In the parent directory to this build_cookbook, the config.json can be modified as necessary. For example, phases can be skipped, publishing information can be added, and so on. Refer to customer support or the Chef Delivery documentation for assistance on what options are available for this configuration.

Test Kitchen - Local Verify Testing

This cookbook also has a .kitchen.yml which can be used to create local build nodes with Test Kitchen to perform the verification phases, unit, syntax, and lint. When running kitchen converge, the instances will be set up like Chef Delivery “build nodes” with the delivery_build cookbook [https://github.com/chef-cookbooks/delivery_build]. The reason for this is to make sure that the same exact kind of nodes are used by this build cookbook are run on the local workstation as would run Delivery. It will run delivery job verify PHASE for the parent project.

Modify the .kitchen.yml if necessary to change the platforms or other configuration to run the verify phases. After making changes in the parent project, cd into this directory (.delivery/build_cookbook), and run:

kitchen test

Recipes

Each of the recipes in this build_cookbook are run in the named phase during the Chef Delivery pipeline. The unit, syntax, and lint recipes are additionally run when using Test Kitchen for local testing as noted in the above section.

Making Changes - Cookbook Example

When making changes in the parent project (that which lives in ../.. from this directory), or in the recipes in this build cookbook, there is a bespoke workflow for Chef Delivery. As an example, we’ll discuss a Chef Cookbook as the parent.

First, create a new branch for the changes.

git checkout -b testing-build-cookbook

Next, increment the version in the metadata.rb. This should be in the parent, not in this, the build_cookbook. If this is not done, the verify phase will fail.

% git diff
<SNIP>
-version '0.1.0'
+version '0.1.1'

The change we’ll use for an example is to install the zsh package. Write a failing ChefSpec in the cookbook project’s spec/unit/recipes/default_spec.rb.

require 'spec_helper'

describe 'godzilla::default' do
 context 'When all attributes are default, on Ubuntu 16.04' do
 let(:chef_run) do
 runner = ChefSpec::ServerRunner.new(platform: 'ubuntu', version: '16.04')
 runner.converge(described_recipe)
 end

 it 'installs zsh' do
 expect(chef_run).to install_package('zsh')
 end
 end
end

Commit the local changes as work in progress. The delivery job expects to use a clean git repository.

git add ../..
git commit -m 'WIP: Testing changes'

From this directory (.delivery/build_cookbook, relative to the parent cookbook project), run

cd .delivery/build_cookbook
kitchen converge

This will take some time at first, because the VMs need to be created, Chef installed, the Delivery CLI installed, etc. Later runs will be faster until they are destroyed. It will also fail on the first VM, as expected, because we wrote the test first. Now edit the parent cookbook project’s default recipe to install zsh.

cd ../../
$EDITOR/recipes/default.rb

It should look like this:

package 'zsh'

Create another commit.

git add .
git commit -m 'WIP: Install zsh in default recipe'

Now rerun kitchen from the build_cookbook.

cd .delivery/build_cookbook
kitchen converge

This will take awhile because it will now pass on the first VM, and then create the second VM. We should have warned you this was a good time for a coffee break.

Recipe: test::default

- execute HOME=/home/vagrant delivery job verify unit --server localhost --ent test --org kitchen
 * execute[HOME=/home/vagrant delivery job verify lint --server localhost --ent test --org kitchen] action run
 - execute HOME=/home/vagrant delivery job verify lint --server localhost --ent test --org kitchen

 - execute HOME=/home/vagrant delivery job verify syntax --server localhost --ent test --org kitchen

Running handlers:
Running handlers complete
Chef Client finished, 3/32 resources updated in 54.665445968 seconds
Finished converging <default-centos-71> (1m26.83s).

Victory is ours! Our verify phase passed on the build nodes.

We are ready to run this through our Delivery pipeline. Simply run delivery review on the local system from the parent project, and it will open a browser window up to the change we just added.

cd ../..
delivery review

FAQ

Why don’t I just run rspec and foodcritic/rubocop on my local system?

An objection to the Test Kitchen approach is that it is much faster to run the unit, lint, and syntax commands for the project on the local system. That is totally true, and also totally valid. Do that for the really fast feedback loop. However, the dance we do with Test Kitchen brings a much higher degree of confidence in the changes we’re making, that everything will run on the build nodes in Chef Delivery. We strongly encourage this approach before actually pushing the changes to Delivery.

Why do I have to make a commit every time?

When running delivery job, it expects to merge the commit for the changeset against the clean master branch. If we don’t save our progress by making a commit, our local changes aren’t run through delivery job in the Test Kitchen build instances. We can always perform an interactive rebase, and modify the original changeset message in Delivery with delivery review --edit. The latter won’t modify the git commits, only the changeset in Delivery.

What do I do next?

Make changes in the cookbook project as required for organizational goals and needs. Modify the build_cookbook as necessary for the pipeline phases that the cookbook should go through.

What if I get stuck?

Contact Chef Support, or your Chef Customer Success team and they will help you get unstuck.

emea_demo_remediation

TODO: Enter the cookbook description here.

Delivery

This project uses Chef Delivery for continuous delivery. When you create
a new feature and submit it for review, Delivery automatically runs
lightweight tests and allows your colleagues to review your change. Once
approved, your change will be deployed to an acceptance environment
where tests can run against a working stack.

For comprehensive Delivery documentation,
visit the official documentation [https://docs.chef.io/start_delivery.html].

planex-ecommerce

TODO: Enter the cookbook description here.

build_cookbook

A build cookbook for running the parent project through Chef Delivery

This build cookbook should be customized to suit the needs of the parent project. Using this cookbook can be done outside of Chef Delivery, too. If the parent project is a Chef cookbook, we’ve detected that and “wrapped” delivery-truck [https://github.com/chef-cookbooks/delivery-truck]. That means it is a dependency, and each of its pipeline phase recipes is included in the appropriate phase recipes in this cookbook. If the parent project is not a cookbook, it’s left as an exercise to the reader to customize the recipes as needed for each phase in the pipeline.

.delivery/config.json

In the parent directory to this build_cookbook, the config.json can be modified as necessary. For example, phases can be skipped, publishing information can be added, and so on. Refer to customer support or the Chef Delivery documentation for assistance on what options are available for this configuration.

Test Kitchen - Local Verify Testing

This cookbook also has a .kitchen.yml which can be used to create local build nodes with Test Kitchen to perform the verification phases, unit, syntax, and lint. When running kitchen converge, the instances will be set up like Chef Delivery “build nodes” with the delivery_build cookbook [https://github.com/chef-cookbooks/delivery_build]. The reason for this is to make sure that the same exact kind of nodes are used by this build cookbook are run on the local workstation as would run Delivery. It will run delivery job verify PHASE for the parent project.

Modify the .kitchen.yml if necessary to change the platforms or other configuration to run the verify phases. After making changes in the parent project, cd into this directory (.delivery/build_cookbook), and run:

kitchen test

Recipes

Each of the recipes in this build_cookbook are run in the named phase during the Chef Delivery pipeline. The unit, syntax, and lint recipes are additionally run when using Test Kitchen for local testing as noted in the above section.

Making Changes - Cookbook Example

When making changes in the parent project (that which lives in ../.. from this directory), or in the recipes in this build cookbook, there is a bespoke workflow for Chef Delivery. As an example, we’ll discuss a Chef Cookbook as the parent.

First, create a new branch for the changes.

git checkout -b testing-build-cookbook

Next, increment the version in the metadata.rb. This should be in the parent, not in this, the build_cookbook. If this is not done, the verify phase will fail.

% git diff
<SNIP>
-version '0.1.0'
+version '0.1.1'

The change we’ll use for an example is to install the zsh package. Write a failing ChefSpec in the cookbook project’s spec/unit/recipes/default_spec.rb.

require 'spec_helper'

describe 'godzilla::default' do
 context 'When all attributes are default, on an unspecified platform' do
 let(:chef_run) do
 runner = ChefSpec::ServerRunner.new
 runner.converge(described_recipe)
 end

 it 'installs zsh' do
 expect(chef_run).to install_package('zsh')
 end
 end
end

Commit the local changes as work in progress. The delivery job expects to use a clean git repository.

git add ../..
git commit -m 'WIP: Testing changes'

From this directory (.delivery/build_cookbook, relative to the parent cookbook project), run

cd .delivery/build_cookbook
kitchen converge

This will take some time at first, because the VMs need to be created, Chef installed, the Delivery CLI installed, etc. Later runs will be faster until they are destroyed. It will also fail on the first VM, as expected, because we wrote the test first. Now edit the parent cookbook project’s default recipe to install zsh.

cd ../../
$EDITOR/recipes/default.rb

It should look like this:

package 'zsh'

Create another commit.

git add .
git commit -m 'WIP: Install zsh in default recipe'

Now rerun kitchen from the build_cookbook.

cd .delivery/build_cookbook
kitchen converge

This will take awhile because it will now pass on the first VM, and then create the second VM. We should have warned you this was a good time for a coffee break.

Recipe: test::default

- execute HOME=/home/vagrant delivery job verify unit --server localhost --ent test --org kitchen
 * execute[HOME=/home/vagrant delivery job verify lint --server localhost --ent test --org kitchen] action run
 - execute HOME=/home/vagrant delivery job verify lint --server localhost --ent test --org kitchen

 - execute HOME=/home/vagrant delivery job verify syntax --server localhost --ent test --org kitchen

Running handlers:
Running handlers complete
Chef Client finished, 3/32 resources updated in 54.665445968 seconds
Finished converging <default-centos-71> (1m26.83s).

Victory is ours! Our verify phase passed on the build nodes.

We are ready to run this through our Delivery pipeline. Simply run delivery review on the local system from the parent project, and it will open a browser window up to the change we just added.

cd ../..
delivery review

FAQ

Why don’t I just run rspec and foodcritic/rubocop on my local system?

An objection to the Test Kitchen approach is that it is much faster to run the unit, lint, and syntax commands for the project on the local system. That is totally true, and also totally valid. Do that for the really fast feedback loop. However, the dance we do with Test Kitchen brings a much higher degree of confidence in the changes we’re making, that everything will run on the build nodes in Chef Delivery. We strongly encourage this approach before actually pushing the changes to Delivery.

Why do I have to make a commit every time?

When running delivery job, it expects to merge the commit for the changeset against the clean master branch. If we don’t save our progress by making a commit, our local changes aren’t run through delivery job in the Test Kitchen build instances. We can always perform an interactive rebase, and modify the original changeset message in Delivery with delivery review --edit. The latter won’t modify the git commits, only the changeset in Delivery.

What do I do next?

Make changes in the cookbook project as required for organizational goals and needs. Modify the build_cookbook as necessary for the pipeline phases that the cookbook should go through.

What if I get stuck?

Contact Chef Support, or your Chef Customer Success team and they will help you get unstuck.

Delivery

This project uses Chef Delivery for continuous delivery. When you create
a new feature and submit it for review, Delivery automatically runs
lightweight tests and allows your colleagues to review your change. Once
approved, your change will be deployed to an acceptance environment
where tests can run against a working stack.

For comprehensive Delivery documentation,
visit the official documentation [https://docs.chef.io/start_delivery.html].

site-config

TODO: Enter the cookbook description here.

Linux Baseline Wrapper Profile

Wraps the default linux-security-baseline profile, and excludes rules os-08 and os-10.

Example InSpec Profile

This example shows the implementation of an InSpec profile.

Windows Baseline Wrapper Profile

Wraps the default windows-security-baseline profile, and excludes rules os-08 and os-10.

 Published Cloudformation templates are now stored in S3.
Access them either through the AWS console or directly:

AWS console (must be logged in to view)
https://console.aws.amazon.com/s3/home?region=us-west-2&bucket=bjcpublic&prefix=cloudformation/

Direct URLs:
https://s3-us-west-2.amazonaws.com/bjcpublic/cloudformation/bjc-demo-1.0.7.json
https://s3-us-west-2.amazonaws.com/bjcpublic/cloudformation/bjc-demo-1.2.0.json
etc.

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/hknf3Wx.jpg

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

